If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20y+y^2=350
We move all terms to the left:
20y+y^2-(350)=0
a = 1; b = 20; c = -350;
Δ = b2-4ac
Δ = 202-4·1·(-350)
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-30\sqrt{2}}{2*1}=\frac{-20-30\sqrt{2}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+30\sqrt{2}}{2*1}=\frac{-20+30\sqrt{2}}{2} $
| A=240(0.75)t | | 8y-(2y-3)=94 | | 14x+112=80 | | 18=-4x+x | | 14*p+5=42*p+210 | | (2y+3)=6y+9 | | 3n+7=16;n=3 | | 5(x-2)=-3x+6+4+8x | | 1x+18=16 | | (36+n)=(20-25) | | 3(5x+4-(3-2x))=20x+5(5x-4x) | | 150+2n=195+n | | 6n-5n=-1 | | 6(k+6)-3(2k+7)=51 | | 13x-10x+20=30-x+2 | | 3(x-5)=17-4x+5-10+2x-2 | | -7+6(7-5n)=245 | | 150+2n=195n | | 6x-5=5x+10-4x | | 30.45=15.2+5a | | 5=-7/z-8 | | 55=7-x | | 26x=16x+50 | | 20.14=12.36+3p | | F(17)=5x-7 | | 9-y=-13 | | 4(x+2)-6=6x-2(-1+x) | | 2x/x=44 | | 10x+17-x-9=3x+2 | | F(x+9)=x^2+3x-1 | | 15-(4x-17)=x-3 | | 5+r/3=r+2/2 |